1 Base Arithmetic

1.1 Binary Numbers

We normally work with numbers in base 10. In this section we consider numbers in *base 2*, often called *binary numbers*.

In *base 10* we use the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

In *base 2* we use only the digits 0 and 1.

Binary numbers are at the heart of all computing systems since, in an electrical circuit, 0 represents *no* current flowing whereas 1 represents a current flowing.

In *base 10* we use a system of place values as shown below:

Note that, to obtain the place value for the next digit to the left, we multiply by 10. If we were to add another digit to the front (left) of the numbers above, that number would represent 10 000s.

In *base 2* we use a system of place values as shown below:

64	32	16	8	4	2	1		
1	0	0	0	0	0	0	\rightarrow	$1 \times 64 = 64$
1	0	0	1	0	0	1	\rightarrow	$1 \times 64 + 1 \times 8 + 1 \times 1 = 73$

Note that the place values begin with 1 and are multiplied by 2 as you move to the left.

Once you know how the place value system works, you can convert binary numbers to base 10, and vice versa.

Example 1

Convert the following binary numbers to base 10:

(a) 111 (b) 101 (c) 1100110

Solution

For each number, consider the place value of every digit.

(a) $\begin{array}{cccc} 4 & 2 & 1 \\ \hline 1 & 1 & 1 \end{array} \rightarrow \begin{array}{c} 4 + 2 + 1 = 7 \end{array}$

The binary number 111 is 7 in base 10.

1.1

MEP Y9 Practice Book A

The binary number 101 is 5 in base 10.

(c)

The binary number 1100110 is 102 in base 10.

l'an l

Example 2

Convert the following base 10 numbers into binary numbers:

(a) 3 (b) 11 (c) 140

Solution

We need to write these numbers in terms of the binary place value headings 1, 2, 4, 8, 16, 32, 64, 128, ..., etc.

(a)

						2	1
3	=	2	+	1	\rightarrow	1	1

The base 10 number 3 is written as 11 in base 2.

The base 10 number 11 is written as 1011 in base 2.

The base 10 number 140 is written as 10001100 in base 2.

Exercises

1. Convert the following binary numbers to base 10:

(a)	110	(b)	1111	(c)	1001
(d)	1101	(e)	10001	(f)	11011
(g)	1111111	(h)	1110001	(i)	10101010
(j)	11001101	(k)	111000111	(1)	1100110

MEP Y9 Practice Book A

	~ .				
2.	Convert the	e following base 10	numbers to binary	number	'S:
	(a) 9	(b)	8	(c)	14
	(d) 17	(e)	18	(f)	30
	(g) 47	(h)	52	(i)	67
	(j) 84	(k)	200	(1)	500
3.	Convert the	e following base 10	numbers to binary	number	rs:
	(a) 5	(b) 9	(c) 17	(d)	33
	Describe a	ny pattern that you	notice in these bina	ary numb	bers.
	What will	be the next base 10	number that will fi	t this pat	ttern?
4.	Convert the	e following base 10	numbers to binary	number	rs:
	(a) 3	(b) 7	(c) 15	(d)	31
	What is the	e next base 10 numb	per that will continue	ue your l	pinary pattern?
5.	A particula	r binary number ha	s 3 digits.		
	(a) What	t are the <i>largest</i> and	smallest possible	binary n	umbers?
	(b) Conv	vert these numbers t	o base 10.		
6.	When a part	rticular base 10 nun	nber is converted it	gives a	4-digit binary
	number. W	hat could the original	nal base 10 number	r be?	
7.	A 4-digit b	inary number has 2	zeros and 2 ones.		
	(a) List a	all the possible bina	ry numbers with th	ese digi	ts.
	(b) Conv	vert these numbers t	o base 10.	0	
8.	A binary n	umber has 8 digits a	and is to be conver	ted to ba	se 10.
	(a) What	t is the <i>largest</i> possi	ible base 10 answe	r?	
	(b) What	t is the <i>smallest</i> pos	sible base 10 answ	er?	
	(0) // 114	is die snamest pos			
9	The base 1	0 number 999 is t	o be converted to h	oinary. F	low many more
7.	digits does	the binary number	have than the num	ber in ba	se 10?
10.	Calculate t	he difference betwe	en the base 10 num	nber 111	111 and the <i>binary</i>
	number 11	111, giving your a	nswer in base 10.		

1.2

1.2 Adding and Subtracting Binary Numbers

It is possible to add and subtract binary numbers in a similar way to base 10 numbers. For example, 1 + 1 + 1 = 3 in base 10 becomes 1 + 1 + 1 = 11 in binary. In the same way, 3 - 1 = 2 in base 10 becomes 11 - 1 = 10 in binary. When you add and subtract binary numbers you will need to be careful when 'carrying' or 'borrowing' as these will take place more often.

> Key Addition Results for Binary Numbers 1 + 0 = 11 1 = 10+ + 1 + 1 = 111

Key Subtraction Results for Binary Numbers

- 0 = 11 10 - 1 = 111 - 1 = 10

Example 1

Calculate, using binary numbers:

(a) $111 + 100$	(b)	101 + 110	(c) $1111 + 111$
Solution			
(a) 1 1 1	(b)	101	(c) 1 1 1 1
+ 1 0 0		+110	+ 111
1011		1011	10110
1		1	1 1 1
Note how important it is	to 'carry' co	rrectly.	

tant it is to carry CO

Example 2

Calculate the binary numbers:

(a) 111 – 101	(b) 110 – 11	(c) 1100 – 101
Solution		
(a) 1 1 1	(b) 1 1 0	(c) 1 1 0 0
_ 1 0 1	_ 11	_ 101
1 0	1 1	1 1 1

ψψ

	Ex	ercis	ses				
•	1.	Calc	culate the binary nur	mbers:			
		(a)	11 + 1	(b)	11 + 11	(c)	111 + 11
		(d)	111 + 10	(e)	1110 + 111	(f)	1100 + 110
		(g)	1111 + 10101	(h)	1100 + 11001	(i)	1011 + 1101
		(j)	1110 + 10111	(k)	1110 + 1111	(1)	11111 + 11101
	2.	Calc	culate the binary nur	mbers:			
		(a)	11 – 10	(b)	110 – 10	(c)	1111 – 110
		(d)	100 - 10	(e)	100 – 11	(f)	1000 – 11
		(g)	1101 - 110	(h)	11011 – 110	(i)	1111 – 111
		(j)	110101 – 1010	(k)	11011 – 111	(1)	11110 – 111
	3.	Calc	culate the binary nur	mbers:			
		(a)	11 + 11		(b)	111 + 111	
		(c)	1111 + 1111		(d)	11111+1	1111
		Dese	cribe any patterns th	nat you	observe in you	r answers.	
	4.	Calc	culate the binary nu	mbers:			
		(a)	10 + 10		(b)	100 + 100)
		(c)	1000 + 1000		(d)	10000 + 1	0000
		Dese	cribe any patterns th	nat you	observe in you	r answers.	
	5.	Solv	ve the following equ	lations,	where all numb	pers, includ	ing <i>x</i> , are binary:
		(a)	x + 11 = 1101		(b)	x - 10 = 1	101
		(c)	x - 1101 = 11011		(d)	x + 1110	= 10001
		(e)	x + 111 = 11110		(f)	<i>x</i> – 1001	= 11101
	6.	Calc	culate the binary nur	mbers:			
		(a)	10 – 1		(b)	100 - 1	
		(c)	1000 - 1		(d)	10000 - 1	
		Dese	cribe any patterns th	nat you	observe in your	r answers.	

1.2 MEP Y9 Practice Book A 7. Convert the binary numbers 11101 and 1110 to base 10. (a) Add together the two base 10 numbers. (b) (c) Add together the two binary numbers. (d) Convert your answer to base 10 and compare with your answer to (b). 8. Convert the binary numbers 11101 and 10111 to base 10. (a) Calculate the difference between the two base 10 numbers. (b) (c) Convert your answer to (b) into a binary number. Calculate the difference between the two binary numbers and (d) compare with your answer to (c). 9. Here are 3 binary numbers: 1110101 1011110 1010011 Working in binary, (a) add together the two smaller numbers, (b) add together the two larger numbers, take the smallest number away from the largest number, (c) (d) add together all three numbers. 10. Calculate the binary numbers: (a) 111 + 101 + 10011101 + 10011 + 110111(b) 1.3 **Multiplying Binary Numbers** Long multiplication can be carried out with binary numbers and is explored in

Long multiplication can be carried out with binary numbers and is explored in this section. Note that multiplying by numbers like 10, 100 and 1000 is very similar to working with base 10 numbers.

Example 1

Calculate the binary numbers:

(a) 1011×100 (b) 110110×1000 (c) 11011×10000 Check your answers to (a) and (c) by converting each number to base 10.

6

Solution

- (a) $1011 \times 100 = 101100$
- (b) $110110 \times 1000 = 110110000$
- (c) $11011 \times 10000 = 110110000$

Checking: 8 4 2 1 (a) $1 \quad 0 \quad 1 \quad 1 \quad \rightarrow \quad 8 + 2 + 1 = 11$ 4 2 1 $1 \quad 0 \quad 0 \quad \rightarrow \quad 4$ 32 16 8 4 2 1 $1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad \to \quad 32 + 8 + 4 = 44$ and $11 \times 4 = 44$, as expected. 16 8 4 2 1 (c) $1 \quad 1 \quad 0 \quad 1 \quad 1 \quad \to \quad 16 + 8 + 2 + 1 = 27$ 16 8 4 2 1 $1 \quad 0 \quad 0 \quad 0 \quad 0 \quad \rightarrow \quad 16$ 256 128 64 32 16 8 4 2 1 $1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad \rightarrow \quad 256 + 128 + 32 + 16 = 432$ $27 \times 16 = 432$, as expected. and Note: clearly it is more efficient to keep the numbers in binary when doing the calculations. Example 2 Calculate the binary numbers: (a) 1011×11 (b) 1110 × 101 (c) 11011×111 (d) 11011×1001 **Solution** (a) 1011 (b) 1110 _ 11 × <u>101</u> × 1011 1110 10110 111000 100001 1000110 1 1 1 1 1 1 1

MEP Y9 Practice Book A

(c)		1 1 0 1 1		(d)		1 1 0 1 1	
	×	1 1 1			×	1001	
		1 1 0 1 1				11011	
		1 1 0 1 1 0			1 1	011000	
	1	101100			1 1	1 1 0 0 1 1	
	10	1 1 1 1 0 1				1 1	
	1 1	1 1 1 1					
Ex	ercis	Ses					
1.	Calc	culate the binary	numbers:				
	(a)	111×10		(b)) 1	100×100	
	(c)	101×1000		(d) 1	1101×1000	
	(e)	11000×10		(f)) 1	0100×1000	
	(g)	10100 ÷ 10		(h) 1	100 ÷ 100	
	Che	ck your answers	by convert	ing to base 1	l0 nu	mbers.	
2.	Calc	culate the binary	numbers:				
	(a)	111×11		(b) 1	101×11	
	(c)	1101×101		(d) 1	111×110	
	(e)	11011×1011		(f)) 1	1010×1011	
	(g)	10101×101		(h)) 1	0101×111	
	(i)	10101×110		(j)	1	00111×1101	
3	Solv	ve the following	equations	where all nu	mher	es including	are hinary:
5.	5017		equations,			x	i, are officiry.
	(a)	$\frac{1}{11} = 110$		(b) -1	$\frac{1}{01} = 101$	
	(c)	$\frac{x}{10} = 111$		(d) -1	$\frac{x}{11} = 1011$	
4.	Mul	tiply each of the	following	binary numb	oers b	y itself:	
	(a)	11	(b)	111		(c) 111	1
	Wha	at do you notice	about your	answers to p	oarts	(a), (b) and (c)?
	Wha	at will you get if	you multip	ly 11111 b	y itse	lf?	

8

1.3

5.	Multiply each of the following binary numbers by itself:								
	(a)	101	(b)	1001	(c)	1000)1	(d)	100001
	Wha	at would you	u expe	ct to get if	you mu	ıltiplie	ed 1000001	by its	self?
6.	Calo	culate the bi	nary n	umbers:					
	(a)	101 (110 -	+ 1101)		(b)	1101 (111	1 – 11	0)
	(c)	111 (1000	- 101)		(d)	1011 (100	01 – 1	010)
7.	Here	e are 3 binar	y num	bers:					
		11011		11100		1001	1		
	Wor	king in bina	ury,						
	(a) multiply the two <i>larger</i> numbers,								
	(b)	multiply t	he two	<i>smaller</i> n	umbers.				
8.	(a)	Multiply t	he bas	e 10 numb	ers 45	and 3	3.		
	(b)	Convert y	our an	swer to a b	oinary n	umber	r.		
	(c)	Convert 4	45 and	133 to bin	ary nun	nbers.			

(d) Multiply the binary numbers obtained in part (c) and compare this answer with your answer to part (b).

1.4 Other Bases

The ideas that we have considered can be extended to other number bases.

The table lists the digits used in some other number bases.

Base	Digits Used
2	0, 1
3	0, 1, 2
4	0, 1, 2, 3
5	0 1, 2, 3, 4

The powers of the base number give the place values when you convert to base 10. For example, for base 3, the place values are the powers of 3, i.e. 1, 3, 9, 27, 81, 243, etc. This is shown in the following example, which also shows how the base 3 number 12100 is equivalent to the base 10 number 144.

Base 3 81 27 9 3 1
1 2 1 0 0
$$\rightarrow$$
 (1 × 81) + (2 × 27) + (1 × 9) +(0 × 3)
+ (0 × 1) = 144 in base 10

The following example shows a conversion from base 5 to base 10 using the powers of 5 as place values.

Base 5 625 125 25 5 1 4 1 0 0 1 \rightarrow (4 × 625) + (1 × 125) + (0 × 25) + (0 × 5) + (1 × 1) = 2626 in base 10

Example 1

Convert each of the following numbers to base 10:

- (a) 412 in base 6.
- (b) 374 in base 9.
- (c) 1432 in base 5.

- Solution
- (a) $36 \ 6 \ 1$ 4 1 2 \rightarrow (4 × 36) + (1 × 6) + (2 × 1) = 152 in base 10
- (b) <u>81 9 1</u>
 - $3 \quad 7 \quad 4 \rightarrow (3 \times 81) + (7 \times 9) + (4 \times 1) = 310 \text{ in base } 10$ $125 \quad 25 \quad 5 \quad 1$
 - $1 \quad 4 \quad 3 \quad 2 \to (1 \times 125) \ + \ (4 \times 25) \ + \ (3 \times 5) \ + \ (2 \times 1) = 242$ in base 10

Example 2

(c)

Convert each of the following base 10 numbers to the base stated:

(a) 472 to base 4, (b) 179 to base 7, (c) 342 to base 3.

Solution

(a) For base 4 the place values are 256, 64, 16, 4, 1, and you need to express the number 472 as a linear combination of 256, 64, 16, 4 and 1, but with no multiplier greater than 3.

We begin by writing

 $472 = (1 \times 256) + 216$

The next stage is to write the remaining 216 as a linear combination of 64, 16, 4 and 1.

We use the fact that $216 = (3 \times 64) + 24$ and, continuing in this way, $24 = (1 \times 16) + 8$ $8 = (2 \times 4) + 0$

Putting all these stages together,

 $472 = (1 \times 256) + (3 \times 64) + (1 \times 16) + (2 \times 4) + (0 \times 1)$ = 13120 in base 4

(b) For base 7 the place values are 49, 7, 1.
179 = (3 × 49) + (4 × 7) + (4 × 1)
= 344 in base 7

Example 3

Carry out each of the following calculations in the base stated:

(a)	14 + 21	base 5
(b)	16 + 32	base 7
(c)	141 + 104	base 5
(d)	212 + 121	base 3

Check your answer in (a) by changing to base 10 numbers.

Solution

(a)	14		
	+ 2 1		
	$\frac{4\ 0}{1}$	Note that $4 + 1 = 10$	in base 5.
(b)	16		
	+ 3 2		
	5 1	Note that $6 + 2 = 11$	in base 7.
	1		

(c) 141 +104300 Note that 1 + 4 = 10 in base 5. 1 1 212 (d) +121 1 1 1 0 Note that, in base 3, 1 1 1 2 + 1 = 101 + 2 + 1 = 112 + 1 + 1 = 11Checking in (a): $5 \quad 1$ $1 \quad 4 \quad \rightarrow \quad (1 \times 5) + (4 \times 1) = 9$ (a) 5 1 $2 \quad 1 \quad \rightarrow \quad (2 \times 5) + (1 \times 1) = 11$ 5 1 $4 \quad 0 \quad \rightarrow \quad (4 \times 5) + (0 \times 1) = 20$

and 9 + 11 = 20, as expected.

Example 4

Carry out each of the following multiplications in the base stated:

(a)	141×23	in base 5
(b)	122×12	in base 3

(c) 512×24 in base 6

Check your answer to (b) by converting to base 10 numbers.

Solution

(a)

1 4 1	Note that, in base 5,				
× 23	$3 \times 4 = 22$				
1 0 2 3	$2 \times 4 = 13$				
3 3 2 0					
4343					

1.4

(b) 1 2 2 Note that, in base 3, $2 \times 2 = 11$ × 12 1 0 2 1 1 2 2 0 $1 \ 0 \ 0 \ 1 \ 1$ 1 1 1 5 1 2 (c) Note that, in base 6, $2 \times 4 = 12$ × 24 3 2 5 2 $4 \times 5 = 32$ 1 4 2 4 0 $2 \times 5 = 14$ 2 1 5 3 2 1 1 Checking in (b): 9 3 1 (b) $1 \quad 2 \quad 2 \quad \to \quad (1 \times 9) + (2 \times 3) + (2 \times 1) = 17$ $\begin{array}{ccc} 3 & 1 \\ \hline 1 & 2 \end{array} \rightarrow (1 \times 3) + (2 \times 1) = 5 \end{array}$ $81 \hspace{0.15cm} 27 \hspace{0.15cm} 9 \hspace{0.15cm} 3 \hspace{0.15cm} 1$ $1 \quad 0 \quad 0 \quad 1 \quad 1 \quad \to \quad (1 \times 81) + (0 \times 27) + (0 \times 9) + (3 \times 1) + (1 \times 1)$ = 85and $17 \times 5 = 85$, as expected.

Exercises

1. Convert the following numbers from the base stated to base 10:

(a)	412	base 5	(b)	333	base 4
(c)	728	base 9	(d)	1210	base 3
(e)	1471	base 8	(f)	612	base 7
(g)	351	base 6	(h)	111	base 3

2.	Con	onvert the following numbers from base 10 to the base stated:								
	(a)	24	to b	ase 3			(b)	16	to b	ase 4
	(c)	321	to b	ase 5			(d)	113	to b	ase 6
	(e)	314	to b	ase 7			(f)	84	to b	ase 9
	(g)	142	to b	ase 3			(h)	617	to b	ase 5
3.	Carry out the following additions in the base stated:									
	(a)	3 + 2	in b	ase 4			(b)	5 + 8	in b	ase 9
	(c)	4 + 6	in b	ase 8			(d)	2 + 2	in b	ase 3
	(e)	6 + 7	in b	ase 9			(f)	3 + 4	in b	ase 6
4.	In w	hat nun	nber	bases cou	uld eac	h of the	follow	ving nu	mber	rs be written:
	(a)	123			(b)	112			(c)	184
5.	Carr	v out ea	ach o	f the foll	owing	calculat	ions ir	the ba	se sta	ated:
	(a)	13 + 1	23	in base	4		(h)	120 +	314	in base 5
	(u) (c)	222 +	- 102	in base	3		(d)	310 +	132	in base 4
	(e)	624 +	- 136	in base	7		(u) (f)	211 +	132	in base 5
	(c) (g)	333 +	- 323	in base	, Д		(l) (h)	141 +	<u>474</u>	in base 5
Check your answers to parts (a), (c) and (e) by converting to bas							to base 10			
	num	bers.								
6.	Carr	y out ea	ach o	f the foll	owing	multipli	cation	s in the	base	e stated:
	(a)	3×2	in l	base 4			(b)	4×3	in t	base 5
	(c)	4×2	in l	base 6			(d)	3×5	in ł	base 6
	(e)	2×2	in l	base 3			(f)	8×8	in t	base 9
7.	Carr	y out ea	ach o	f the foll	owing	multipli	cation	s in the	base	e stated:
	(a)	121 ×	11	in base 3		-	(b)	133 ×	12	in base 4
	(c)	13 × 3	24	in base 5			(d)	142 ×	14	in base 5
	(e)	161 ×	24	in hase 7			(f)	472 ×	32	in base 8
	(c) (g)	414 ~	<pre>21</pre>	in hase 5			(h)	2101	× 21	in base 3
	(g) Cha		22 200	uers to pr	arte (a)	(c) and	(\mathbf{n})		~ 21	to base 10
	numbers							10 0000 10		

1.4

MEP Y9 Practice Book A

8. In which base was each of the following calculations carried out?

(a)	4 + 2 = 11	(b)	7 + 5 = 13
(c)	$8 \times 2 = 17$	(d)	$4 \times 5 = 32$
(e)	11 - 3 = 5	(f)	22 - 4 = 13

9. (a) Change 147 in base 8 into a base 3 number.

- (b) Change 321 in base 4 into a base 7 number.
- (c) Change 172 in base 9 into a base 4 number.
- (d) Change 324 in base 5 into a base 6 number.

10. In which base was each of the following calculations carried out?

- (a) $171 \times 12 = 2272$ (b) $122 \times 21 = 11102$
- (c) $24 \times 32 = 1252$ (d) $333 \times 33 = 23144$